Station 1 Identify the slope and *y*-intercept.

1.
$$y = 2x - 7$$

$$2. y = -\frac{2}{3}x - 3$$

3.
$$y = -2$$

4.
$$y = -3x + \frac{4}{5}$$

5.

Slope: _____

y- int: _____

Equation:

6.

Slope: _____

y- int: _____

Equation:

Station 2 Write the equation of the line given the slope and *y*-intercept.

1) Slope =
$$-\frac{2}{3}$$
, y-int = 1

2) Slope =
$$\frac{4}{5}$$
, y-int = -1

3) Slope =
$$-\frac{1}{3}$$
, y-int = 3

4) Slope =
$$-3$$
, y-int = -5

5) Slope =
$$\frac{8}{3}$$
, y-int = 5

6) Slope =
$$-1$$
, y -int = -1

7) Slope = 4,
$$y$$
-int = 0

8) Slope = 1,
$$y$$
-int = 2

9) Slope =
$$-\frac{5}{2}$$
, y-int = 4

10) Slope =
$$\frac{1}{2}$$
, y-int = -3

Station 3 Sketch the line of each graph

2)

3)

$$y = -\frac{5}{2}x - 1$$
 4)

slope = _____

y-intercept = _____

$$y = -x + 3$$

slope = _____

y-intercept = _____

5)

$$y = 2x - 2$$

6)

$$y = \frac{1}{3}x - 4$$

slope = _____

y-intercept = _____

Station 4:

$$y = mx + b$$
 or $y = mx - b$

Equation A: y = 2x + 1

Fill in the table of values:

X	y
-2	
-1	
0	
1	
2	

Answer the following questions:

- 1. What is the slope of the function? _____
- 2. What is the *y*-intercept? (_____, ____)

Equation B: y = -2x + 1

Fill in the table of values:

X	y
-2	
-1	
0	
1	
2	

Answer the following questions:

- 1. What is the slope of the function? _____
- 2. What is the *y*-intercept? (_____, ____)