Break-Even Analysis

UNIT 4 - MODELING A BUSINESS

Graphs \& Equations Review

- A linear equation makes a graph that is a straight line.
- General equation: $y=m x+b$

$y=2 x+0$

$y=-0.2 x+3$

Graphs \& Equations Review

- A quadratic equation makes a graph that is a parabola.
- General equation: $y=a x^{2}+b x+c$

$y=x^{2}+2 x-4$

$y=4 x^{2}-5 x+1$

What happens when revenue equals

 expense?Remember: This is when you breakeven.

- Business analysts must examine the revenue and expense graphs.
- They will recommend prices for products to yield maximum revenue.

What happens when revenue equals expense?

- Part of this process is examining breakeven points. This is called a breakeven analysis.
- Calculations \& interpretations must be done during a breakeven analysis.

Example 1:

The expense equation for the production of a certain cell phone is $E=1,250 q+800,000$. At a particular price, the breakeven revenue is $\$ 2,600,000$. What is the quantity demanded at the breakeven point?

Remember: breakeven occurs when $R=E$

$$
\begin{aligned}
& \text { SO... } \\
& 2,600,000=1,250 q+800,000 \\
& -800,000 \quad-800,000 \\
& 1,800,000=1,250 q \\
& \div 1,250 \div 1,250 \\
& \lceil 1,440=q \vdots
\end{aligned}
$$

What happens when revenue equals expense?

- When the revenue function is a quadratic function, you need to use the quadratic formula to solve for the breakeven points.

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 2:

Determine the prices at the breakeven points for a certain paint product.

$$
\begin{aligned}
& \text { Expense Function } \\
& \begin{array}{rl}
E=-3,500 q+238,000 & R=-500 q^{2}+30,000 q
\end{array} \\
& \qquad \begin{aligned}
E & =R \\
-3,500 q+238,000 & =-500 q^{2}+30,000 q \\
+500 q^{2}-30,000 q & +500 q^{2}-30,000 q \\
500 q^{2}+-33,500 q+238,000 & =0
\end{aligned}
\end{aligned}
$$

Now use the quadratic formula to solve for q.

Example 2:

$$
\begin{gathered}
500 q^{2}+-33,500 q+238,000=0 \quad a=500 \quad b=-33,500 \quad c=238,000 \\
q=\frac{-(-33,500) \pm \sqrt{(-33,500)^{2}-(4 \times 500 \times 238,000)}}{2 \times 500} \\
q=\frac{33,500 \pm \sqrt{1,122,250,000-(476,000,000)}}{1,000} \\
q=\frac{33,500 \pm \sqrt{646,250,000}}{1,000} \quad q=\frac{33,500+25421.45}{1,000}=\frac{58,921.45}{1,000} \quad=\frac{5}{1,0}=\frac{33,9}{1,000} \\
q=\frac{33,500 \pm 25421.45}{1,000}
\end{gathered}
$$

Example 3:

Determine the revenue and expense for the paints product at the breakeven points from example 1.

Expense Function
$E=-3,500 q+238,000$
$E=-3,500(58.92)+238,000$
$E=31,780$
$E=$
$E=-3,500(8.08)+238,000$
$E=209,720$

$$
\begin{aligned}
& \frac{\text { Revenue Function }}{R=-500 q^{2}+30,000 q}
\end{aligned}
$$

$R=-500(58.92)^{2}+30,000(58.92)$

$$
R=31,780
$$

$$
R=-500(8.08)^{2}+30,000(8.08)
$$

$$
R=209,720
$$

Breakeven Points

$$
q=58.92 \& q=8.08
$$

