FIXED \& VARIABLE EXPENSES

Unit 4

WHAT EXPENSES ARE INVOLVED IN THE MANUFACTURING PROCESS?

There are two kinds of expenses in any kind of business

- Variable expenses: exact amount is unknown. Variable expenses depend on the number of items produced.
- Examples: raw materials needed to make the product (cloth, paint, etc.), office supplies, labor expenses
- Fixed expenses: exact amount is known and does not rely on the number of items produced.
- Examples: rent, property tax, internet

TOTAL EXPENSES

The total expenses is the sum of the fixed expenses and the variable expenses.

Expense equation:

Total Expenses $=$ Fixed Expenses + Variable Expenses

$$
T=F+V
$$

REVENUE

The revenue is the income a business receives from selling its product.
Revenue equation:
Revenue $=$ price of the product \times quantity of products sold

$$
R=p q
$$

revenue \neq profit

Once you have your revenue amount, you must then subtract the expenses from it to see how much you're left with.

Revenue - Expenses $=$ Positive Number
You made a PROFIT! ©

Once you have your revenue amount, you must then subtract the expenses from it to see how much you're left with.

You have a LOSS :

revenue \neq profit

Once you have your revenue amount, you must then subtract the expenses from it to see how much you're left with.

$$
\begin{gathered}
\text { If } \\
\text { Revenue - Expenses }=\mathbf{0}
\end{gathered}
$$

You don't have a profit or a loss.
This is called the breakeven point.

EXAMPLE 1

The art students have researched all of their potential expenses for their assigned projects. The fixed expenses are $\$ 17,600$. The labor and materials required for each item produced costs $\$ 7.53$. Represent the total expenses as a function of the quantity produced, q.

$$
\begin{aligned}
& \text { total expenses }=\text { variable expenses }+ \text { fixed expenses } \\
& \text { total expenses }=\text { variable expenses }+\$ 17,600 \\
& \text { total expenses }=(\$ 7.53 \times 9)+\$ 17,600
\end{aligned}
$$

EXAMPLE 2

Raymond Ski Supply manufactures hand warmers for skiers. Their expense function is $E=1.18 q+12,000$.
a) Find the cost of producing 50,000 pairs of hand warmers if 50,000 hand warmers.

$$
\begin{aligned}
& E=1.18 q+12,000 \\
& E=1.18(50,000)+12,000 \\
& E=59,000+12,000 \\
& E=\$ 71,000
\end{aligned}
$$

EXAMPLE 2

Raymond Ski Supply manufactures hand warmers for skiers. Their expense function is $E=1.18 q+12,000$.
b) Find the average cost of producing one pair of hand warmers.

$$
\begin{aligned}
\text { cost PER pair } & =\frac{\text { cost }}{\text { pair }} \\
& =\frac{\$ 71,000}{50,000} \\
& =\$ 1.42
\end{aligned}
$$

EXAMPLE 3

Wally's Widget World created a monthly expense equation, $E=1.10 q+4,200$. Wally's Widget World plans to sell its widgets to retailers at a wholesale price of $\$ 2.50$ each.
a) What is its revenue function?

$$
\text { Revenue }=\text { price } \times \text { quantity }
$$

$$
!R=2.50 q
$$

EXAMPLE 3

Wally's Widget World created a monthly expense equation, $E=1.10 q+4,200$. Wally's Widget World plans to sell its widgets to retailers at a wholesale price of $\$ 2.50$ each.
b) How many widgets must be sold to reach the breakeven point?

* The breakeven point is when expenses = revenue

$$
E=R
$$

$$
1.10 q+4,200=2.50 q
$$

$-1.10 q \quad-1.10 q$
$4,200=1.40 q$
$\div 1.40 \div 1.40$
$3,000=q$

EXAMPLE 3

Wally's Widget World created a monthly expense equation, $E=1.10 q+4,200$. Wally's Widget World plans to sell its widgets to retailers at a wholesale price of $\$ 2.50$ each.
b) How many widgets must be sold to reach the breakeven point?

* You can also solve this by graphing both equations and seeing where they intersect.

EXAMPLE 3

Use desmos or a graphing calculator to graph each equation and see what their intersection point is.

EXAMPLE 4

Find the breakeven point for the expense function, $E=5.00 q+60,000$, and the revenue function, $R=7.00 \mathrm{q}$.

$$
\begin{aligned}
E & =R \\
5.00 q+60,000 & =7.00 q \\
-5.00 q & -5.00 q \\
60,000 & =2.00 q \\
\div 2.00 & \div 2.00 \\
\cdots & \cdots
\end{aligned}
$$

